
Abstract. For 357 subshells of the 53 neutral atoms He
through Xe in their ground states, the two-electron
intracule (relative motion) hukinl and extracule (center-
of-mass motion) hRkinl subshell moments in position
space are examined as well as their counterparts hvkinl
and hP kinl in momentum space, where n and l are the
principal and azimuthal quantum numbers of the
atomic subshell, respectively. It is clari®ed that between
the intracule and extracule moments the ``2k-rule''
is strictly valid, which means hukinl � 2khRkinl and
hvkinl � 2khP kinl for any nl subshell. Theoretical analysis
also proves that for a particular case of k � �2,
two relations hu2inl � �Nnl ÿ 1�hr2inl and hv2inl ��Nnl ÿ 1�hp2inl hold exactly, where Nnl �� 2� is the
number of electrons in the subshell nl, and hrkinl andhpkinl are the familiar one-electron subshell moments in
position and momentum spaces, respectively. The latter
equality establishes a new and rigorous relation between
the second electron-pair moments in momentum space
and the total energy of an atom through the virial
theorem. For k � �1, ÿ1, and ÿ2, the numerical
Hartree-Fock results for the 357 subshells show that
there are approximate but accurate linear relations
between hukinl and hrkinl and between hvkinl and hpkinl,
in which the proportionality constant in each space
depends on n; l, and k.
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1 Introduction

The intracule (relative motion) I�u� and extracule
(center-of-mass motion) E�R� densities [1], as well as
their spherical averages h�u� and d�R�, are a couple of
electron-pair densities useful to analyze the motion of a

pair of electrons in atoms and molecules (see, for
example, Ref. [2] for a review). The intracule densities
I�u� and h�u� are the probability density functions for
the relative vector u � ri ÿ rj and its magnitude
u � jri ÿ rjj of any pair of electrons i and j. On the
other hand, the extracule densities E�R� and d�R�
represent the probability density functions for the
center-of-mass vector R � �ri � rj�=2 and its magnitude
R � jri � rjj=2 of any pair of electrons i and j. The
corresponding intracule �I�v� and �h�v� densities and
extracule �E�P� and �d�P � densities are also introduced
in momentum space, and represent the probability
density functions for the relative and center-of-mass
momentum vectors and their magnitudes for a pair of
electrons. As reviewed in Refs. [2±4], for example,
studies on the two-electron intracule and extracule
densities are limited compared with the familiar one-
electron position q�r� and momentum P�p� densities or
their spherical averages q�r� and P�p�. Within the
Hartree-Fock framework, however, systematic examin-
ations of the spherically averaged intracule h�u� and
extracule d�R� densities, together with their momentum-
space counterparts �h�v� and �d�P �, have been performed
very recently for the neutral atoms from He to Xe in
their ground states [5, 6].

The one-electron position hrki and momentum hpki
moments follow immediately from the one-electron
position q�r� and momentum P�p� densities, respec-
tively, and characterize the distributions of their parent
densities. Analogously, the intracule densities h�u�
and �h�v� are accompanied by the two-electron intra-
cule moments huki and hvki, respectively, and the extra-
cule densities d�R� and �d�P � with the two-electron
extracule moments hRki and hP ki, respectively. Accurate
Hartree-Fock values of the intracule moments huki and
hvki and the extracule moments hRki and hP ki, based on
numerical Hartree-Fock calculations, have been report-
ed for the atoms He through Xe [3, 4]. Though these
intracule and extracule moments characterize the dis-
tributions of the parent electron-pair densities, the
practical signi®cance of the four kinds of two-electron
moments is not yet known in many-electron systems
except for two particular cases. The position-space in-Correspondence to: H. Matsuyama
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tracule moment huÿ1i is just the electron-electron re-
pulsion energy, and the ®rst moments hui and hvi are the
average interelectronic distances in position and mo-
mentum spaces, respectively. The role of the two-elec-
tron moments in atomic and molecular quantum theory
is quite di�erent from that of the one-electron moments
hrki and hpki, many of which are directly connected with
important physical properties of atoms and molecules.

Recently however, we have found that in position
space the two-electron intracule huki and extracule hRki
moments of atoms have good linear correlation with the
familiar one-electron moments hrlik=l for some combi-
nations of small positive integers k and l [7]. The same is
true in momentum space for the corresponding intracule
hvki and extracule hP ki moments and the one-electron
moments hplik=l. The correlation is generally better in
momentum space than in position space and also when
k � l than when k 6� l. The best linear correlation is
observed between hv2i and hp2i and between hP 2i and
hp2i with a correlation coe�cient of 0.999999. Though
these results suggest hidden structural relationships
between the one- and two-electron densities, we could
not ®nd any appropriate model to explain the observed
linearity [7].

In the present paper, we decompose the intracule and
extracule moments of atoms according to subshells
speci®ed by the principal n and azimuthal l quantum
numbers, and study the contributions arising from a pair
of electrons in a subshell. The 53 neutral atoms from He
to Xe in their ground states are the subject of our study,
and hence there is a total of 357 subshells which contain
two or more electrons. The next section summarizes the
de®nitions of various one- and two-electron density
functions and the associated moments as well as their
subshell decompositions. The 2k rule for the kth intra-
cule and extracule moments for a subshell nl will be
proved. An interesting yet rigorous relation will also be
clari®ed between the second one- and two-electron mo-
ments. In Sect. 3, we describe our computational pro-
cedures based on the numerical Hartree-Fock method.
The results are presented and discussed in Sect. 4. Har-
tree atomic units are used throughout this paper.

2 Theoretical structure of one-
and two-electron densities and their moments

2.1 One-electron densities and their moments

For an N -electron system �N � 1�, the spin-reduced one-
electron density q�r� and its spherical average q�r� in
position space are de®ned [8] by

q�r� � N
Z

dr dx2 . . . dxN jW�x; x2; . . . ; xN �j2 ; �1a�

q�r� � �4p�ÿ1
Z

dXrq�r� ; �1b�
where r � �r;Xr� with Xr � �hr;/r�, W�x1; . . . ; xN � is the
electronic wave function of the system under consider-
ation, and xi � �ri; ri� is the combined position-spin
coordinate of the electron i. The associated one-electron
position moments hrki are de®ned by

hrki �
Z

dr rkq�r�

� 4p
Z1
0

dr rk�2 q�r� :
�1c�

For a single Slater determinant Hartree-Fock wave
function composed of N orthonormal spin orbitals
wj�r�gj�r�, Eq. (1a) is rewritten as a sum of orbital
contributions jwj�r�j2. For atoms and atomic ions, we
can generally assume that the spatial function wj�r� has a
form

wj�r� � Rnjlij�r�Yljmj�Xr� ; �2�
where Ylm�X� is a spherical harmonic. Then the one-
electron densities q�r� and q�r� for atoms are decom-
posed into contributions from di�erent subshells spec-
i®ed by a set of the principal n and azimuthal l quantum
numbers.

q�r� �
X

nl

qnl�r�; qnl�r� �
XN

j�1
dnnjdllj jwj�r�j2 ; �3a�

q�r� �
X

nl

qnl�r�;

qnl�r� � �4p�ÿ1
XN

j�1
dnnjdllj jRnjlj�r�j2;

�3b�

where dij denotes the Kronecker delta. The associated
subshell moments hrkinl are given by

hrkinl �
Z

dr rkqnl�r� � 4p
Z1
0

dr rk�2 qnl�r� ; �3c�

where the normalization is hr0inl � Nnl, the number of
electrons in the subshell nl.

If we start from a momentum-space N -electron wave
function U�y1; . . . ; yN �, where yi � �pi; ri� is the com-
bined momentum-spin coordinate of the electron i, the
exactly analogous procedure de®nes the momentum-
space one-electron density P�p�, its spherical average
P�p�, and one-electron momentum moments hpni. The
Hartree-Fock wave function in momentum space has
exactly the same determinantal structure as that in po-
sition space, provided that the one-electron spatial
function wj�r� is replaced with

/j�p� � �2p�ÿ3=2
Z

dr exp�ÿip � r�wj�r� : �4a�

For the position-space atomic orbital given by Eq. (2),
the corresponding momentum-space orbital is

/j�p� � Pnjlj�p�Yljmj�Xp� ; �4b�
where p � �p;Xp� and

Pnjlj�p� � �ÿi�lj

���
2

p

r Z1
0

dr r2jlj�pr�Rnjlj�r� ; �4c�

in which jl�x� is the lth order spherical Bessel function of
the ®rst kind. Then the subshell components Pnl�p�,
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Pnl�p�, and hpkinl in momentum space are immediately
obtained from equations analogous to Eqs. (3a)±(3c).

2.2 Two-electron intracule densities and their moments

For an N -electron system �N � 2�, the intracule density
I�u�, its spherical average h�u�, and the intracule
moments huki are de®ned [1, 2] by

I�u� �
Z

dr1dr2 d�uÿ �r1 ÿ r2��C�r1; r2� ; �5a�
h�u� � �4p�ÿ1

Z
dXuI�u� ; �5b�

huki �
Z

du uk I�u� � 4p
Z1
0

du uk�2 h�u� ; �5c�

where u � �u;Xu� with Xu � �hu;/u�; d�r� is the three-
dimensional Dirac delta function, and C�r1; r2� is the
spin-reduced two-electron density function [8],

C�r1; r2� �
N

2

� �Z
dr1dr2dx3 . . . dxN jW�x1; . . . ; xN �j2 :

�6�
For a single Slater determinant wave function com-

posed of N orthonormal spin orbitals wj�r�gj�r�,
C�r1; r2� reduces to a sum of spin-orbital-pair contri-
butions,

C�r1; r2� � 1
2

XN

j�1

XN

k�1
Cjk�r1; r2� ; �7a�

Cjk�r1; r2� �jwj�r1�j2jwk�r2�j2
ÿ ds�j; k��w�j �r1�wk�r1���w�k�r2�wj�r2�� ; �7b�

where ds�j; k� is unity if the two spin orbitals j and k
have the same spin and is zero if they have opposite
spins. Accordingly, the intracule densities I�u� and h�u�
are decomposed into spin-orbital-pair components Ijk(u)
and hjk�u�, respectively. When we use the kernel of three-
dimensional Fourier transformation for the Dirac delta
function,

d�r� � �2p�ÿ3
Z

ds exp��ir � s� ; �8�

the spin-orbital-pair components Ijk(u) and hjk�u� are
expressed as the Fourier and Hankel transforms of their
characteristic functions Fjk(s) and Hjk�s�,

Ijk�u� � �2p�ÿ3
Z

ds exp��iu � s� Fjk�s� ; �9a�

hjk�u� � �2p2�ÿ1
Z1
0

ds s2j0�us�Hjk�s� ; �9b�

where

Fjk�s� � F jj
kk�s� ÿ ds�j; k�F kj

kj �s� ; �9c�

Hjk�s� � Hjj
kk�s� ÿ ds�j; k�Hkj

kj �s� ; �9d�

in which

F jk
lm �s� � f �jk�s�flm�s�;

Hjk
lm �s� � �4p�ÿ1

Z
dXs F jk

lm �s�; �9e�

fjk�s� �
Z

dr exp��is � r�w�j�r�wk�r� � f �kj�ÿs� ; �9f�

and s � �s;Xs�.
For atomic systems with the spatial function (2), we

obtain [3, 9]

fjk�s� �
������
4p
p Xlj�lk

l�jljÿlkj
il
�������������
2l� 1
p

cl�j; k�Y �l;mjÿmk
�Xs�

�Wljk�s� ; �10a�
where

Wljk�s� �
Z1
0

dr r2jl�sr�R�j�r�Rk�r� � W �
lkj�s� ; �10b�

and cl�j; k� � cl�ljmj; lkmk� is the Condon-Shortley
parameter [10]. Note that due to the property of
cl�j; k�, the summation in Eq. (10a) runs over every
other integer between the speci®ed values. Based on
(10a), the angular integration in the function Hjk

lm �s� is
performed analytically. We have

Hjk
lm �s� �

Xmin�lj�lk;ll�lm�

l�max�jljÿlkj;jllÿlmj�
�2l� 1�cl�j; k�

� cl�l; m�W �
ljk�s�Wllm�s� ; �11a�

if �lj � lk � ll � lm� is even and mj ÿ mk � ml ÿ mm.
When either or both of these conditions are not satis®ed,
Hjk

lm �s� vanishes. Two special cases of Eq. (11a) are

Hjj
kk�s� �

Xmin�2lj;2lk�

l�0
�2l� 1�al�j; k�W �

ljj�s�Wlkk�s� ; �11b�

Hkj
kj �s� �

Xlj�lk

l�jljÿlk j
�2l� 1�bl�k; j�

����Wlkj�s�
����2 ; �11c�

which appear in Eq. (9d), where al�j; l� � cl�j; j�cl�l; l�
and bl�j; l� � �cl�j; l��2 are Condon-Shortley parame-
ters [10]. The summations in Eqs. (11a)±(11c) run over
every other integer between the speci®ed values.

The subshell intracule densities Inl(u) and hnl�u� are
de®ned by

Inl�u� �
XNÿ1
j�1

XN

k�j�1
dnnjdlljdnnk dllk Ijk�u� ; �12a�

hnl�u� �
XNÿ1
j�1

XN

k�j�1
dnnjdlljdnnk dllk hjk�u� : �12b�

The associated subshell intracule moments hukinl are
given by
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hukinl �
Z

du uk Inl�u�

� 4p
Z1
0

du uk�2hnl�u� ;
�12c�

where hu0inl � Nnl�Nnl ÿ 1�=2, the number of electron
pairs in the subshell nl. For integer values of k, the
moments can also be derived from the characteristic
function directly. Explicit formulas are obtained imme-
diately from the relations reported in Refs. [3, 4]. Note
that the subshell densities Inl�u� and hnl�u� are mean-
ingful only when there are two or more electrons in a
subshell.

Exactly analogous de®nitions apply to the momen-
tum-space intracule �I�v� and �h�v� densities, the associ-
ated moments hvki, and their subshell components, if we
start from a momentum-space N -electron wave function
U�y1; . . . ; yN �, spin-orbitals /j�p�gj�r�, and atomic ra-
dial functions Pnjlj�p�.

2.3 Two-electron extracule densities and their moments

The extracule density E�R�, its spherical average d�R�,
and moments hRki are de®ned [1, 2] by

E�R� �
Z

dr1dr2 d�Rÿ �r1 � r2� =2�C�r1; r2� ; �13a�

d�R� � �4p�ÿ1
Z

dXR E�R� ; �13b�

hRki �
Z

dR RkE�R� � 4p
Z1
0

dR Rk�2d�R� �13c�

where R � �R;XR� with XR � �hR;/R�.
For single determinant wave functions, the spin-

orbital-pair components Ejk�R� and djk�R� read

Ejk�R� � pÿ3
Z

ds exp��2iR � s�Gjk�s� ; �14a�

djk�R� � �4=p2�
Z1
0

ds s2j0�2Rs�Djk�s� ; �14b�

where the characteristic functions Gjk�s� and Djk�s� have
the same mathematical structure as Eqs. (9c) and (9d),
and are simply obtained if we replace F jk

lm �s� with
Gjk

lm�s� � f �jk�s�flm�ÿs� � f �jk�s�f �ml�s� ; �14c�
and Hjk

lm �s� with

Djk
lm�s� � �4p�ÿ1

Z
dXs Gjk

lm�s� : �14d�

The explicit form of Djk
lm�s� for atomic systems has been

obtained [9] as

Djk
lm�s� �

Xmin�lj�lk;ll�lm�

l�max�jljÿlkj;jllÿlmj�
�ÿ1�l�2l� 1�cl�j; k�cl�l; m�

�W �
ljk�s�Wllm�s� ; �15a�

if �lj � lk � ll � lm� is even and mj ÿ mk � ml ÿ mm.
When these two conditions are not satis®ed simulta-
neously, Djk

lm�s� vanishes. The two particular cases of
Eq. (15a) corresponding to Eqs. (11b) and (11c) are

Djj
kk�s� �

Xmin�2lj;2lk�

l�0
�2l� 1�al�j; k�W �

`jj�s�Wlkk�s� ; �15b�

Dkj
kj�s� �

Xlj�lk

l�jljÿlk j
�ÿ1�l�2l� 1�bl�k; j�jWlkj�s�j2 ; �15c�

which were also derived in Ref. [4]. The summations in
Eqs. (15a)±(15c) run over every other integer between
the speci®ed values.

The subshell extracule densities Enl(R) and dnl�R� and
the associated moments hRkinl are de®ned by equations
analogous to Eqs. (12a)±(12c).

Exactly the same procedures as above de®ne the
corresponding extracule properties �Enl�P�; �dnl�P�, and
hP kinl for an nl subshell in the momentum representa-
tion.

2.4 Isomorphism and 2k-rule
of two-electron subshell properties

Comparison of the characteristic functions Hjk�s� and
Djk�s� of the spin-orbital-pair intracule hjk�u� and
extracule djk�R� densities for Hartree-Fock atoms
shows [see Eq. (9d)] that the ®rst terms are identical,
Hjj

kk�s� � Djj
kk�s�, as seen from Eqs. (11b) and (15b).

On the other hand, the second terms Hkj
kj �s�

and Dkj
kj�s� with the spin factor ds�j; k� di�er by a

sign factor �ÿ1�l in the summation over l as seen in Eqs.
(11c) and (15c). If the spin-orbitals j and k belong to the
same subshell nl, however, the sign factor is always unity
leading to

Hnl�s� � Dnl�s� ; �16a�
for the characteristic functions of the subshell intracule
hnl�u� and extracule dnl�R� densities. Equation (16a)
combined with Eqs. (9b) and (14b) results in a rigorous
relation,

dnl�R� � 8hnl�2R� : �16b�
The proportionality constant is 8 � 23, where the factor
2 comes from the denominator in the Dirac delta
function in Eq. (13a) and the exponent 3 originates
from the three dimensionality of space. The relative and
center-of-mass motions of a pair of electrons are
essentially di�erent even if the electrons are bound in
an atom. Nevertheless, Eq. (16b) implies an interesting
fact, namely, that the density distributions of the relative
and center-of-mass motions are isomorphic with each
other when the two electrons are in the same atomic
subshell. Equation (16b) further yields a ``2k rule'',

hukinl=hRkinl � 2k ; �16c�
between the intracule and extracule moments of any
subshell nl, where k is a real number for which the
moments are well de®ned.
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The exact relations between the subshell intracule and
extracule properties discussed above in position space
are also valid in momentum space, and we have a set
of corresponding equations, �Hnl�s� � �Dnl�s�, �dnl�P� �
8�hnl�2P�, and hvkinl=hP kinl � 2k.

2.5 Second one- and two-electron subshell moments

For integer values of k, we can obtain the intracule hukiij
and hvkiij moments and the extracule hRkiij and hP kiij
moments, arising from a pair of spin orbitals i and j,
directly from the respective characteristic functions, by
using the techniques developed in Refs. [3, 4]. When k is
a non-negative even integer, the results are simplest and
the expression for hukiij, for example, is given by

hukiij � �ÿ1�k=2�k � 1�H �k�ij �0� ; �17�
where H �k�ij �s� is the kth derivative of the characteristic
function Hij�s�. If we are reminded that jl�0� � dl0, we
obtain from Eqs. (9d), (10b), (11b), and (11c) that for
k � 0,

hu0iij � Hij�0� � a0�i; j� ÿ ds�i; j�jX0ijj2 � 1 ; �18�
since a0�i; j� � 1 and either or both of ds�i; j� and X0ij are
zero for any i and j�6� i�, where

Xkij �
Z1
0

dr rk�2 R�i �r�Rj�r� � X �kji : �19�

When k � �2 in Eq. (17), we have

hu2iij � X2ii � X2jj
� �
ÿ ds�i; j�

Xli�lj

l�jliÿljj
�2l� 1�bl�i; j�

� dl0�X0ijX2ji � X0jiX2ij� ÿ 2

3
dl1jX1ijj2

� �
: �20�

If the spin orbitals i and j constitute the same atomic
subshell nl, the last term with the spin factor ds�i; j� of
Eq. (20) vanishes. Then the summation over such spin-
orbital pairs gives for the second intracule subshell
moment hu2inl

hu2inl � �Nnl ÿ 1�hr2inl ; �21a�
where Nnl �� 2� is the number of electrons in the subshell
nl and we have used Xkii � hrkii. Analogously, we obtain
in momentum space the corresponding equality,

hv2inl � �Nnl ÿ 1�hp2inl : �21b�
Combination of Eqs. (21a, b) with Eq. (16c) and its
momentum-space analog further yields

hR2inl � �Nnl ÿ 1�hr2inl=4 ; �21c�
hP 2inl � �Nnl ÿ 1�hp2inl=4 : �21d�
Equations (21a)±(21d) imply that when two electrons
belong to the same subshell, the second intracule
and extracule moments are exactly proportional to the

second one-electron moment of that subshell. To our
knowledge, rigorous relations of this kind are not
reported in the literature between one- and two-electron
properties.

The Hartree-Fock approximation satis®es the quan-
tum-mechanical virial theorem which states that the to-
tal energy E is equal to the negative of the kinetic energy
T for atomic systems. Since the kinetic energy is the sum
of the second one-electron momentum moments hp2inl
divided by two, Eqs. (21b) and (21d) further give

E � ÿ 1
2

X
nl

hv2inl

Nnl ÿ 1
� ÿ2

X
nl

hP 2inl

Nnl ÿ 1
; �22�

if all the occupied subshells contain two or more
electrons. Namely, both the second intracule and
extracule moments in momentum space are directly
and explicitly connected with the total energy of an
atom. It is also important that Eqs. (21) and (22) are
valid within the Hartree-Fock framework for any LS
term of any electronic con®guration of a subshell nl
speci®ed by any set of the quantum numbers n and l.

Though the expressions are much involved, rigorous
relations similar to Eq. (20) can be derived between
higher two-electron moments with even k and one-
electron moments of spin-orbital-pair densities. When
k � �4, for example, we obtain

hu4iij �
Xmin�2li;2lj�

l�0
�2l� 1�al�i; j�

� dl0 X4ii � X4jj � 10
3 X2iiX2jj

ÿ �� 8
15dl2X2iiX2jj

� �
ÿ ds�i; j�

Xli�lj

l�jliÿljj
�2l� 1�bl�i; j�

� dl0 X0ijX4ji � X0jiX4ij � 10
3 jX2ijj2

� �h
ÿ 4

3
dl1 X1ijX3ji � X1jiX3ij
ÿ �

� 8

15
dl2jX2ijj2

�
; �23�

which depends on the full details of the relevant spin-
orbitals via the Condon-Shortley parameters al�i; j� and
bl�i; j�. Unfortunately we cannot derive a general
formula like Eq. (21a) for the subshell component
hu4inl. For two-electron moments with odd k or k < 0,
we could not ®nd any simple and useful relations with
one-electron moments.

3 Computational details

For the 53 neutral atoms from He to Xe in their
experimental ground LS multiplet states [11], the Har-
tree-Fock orbitals were numerically generated by using
an enhanced version of the MCHF72 code [12, 13]. The
spherically averaged one-electron subshell density qnl�r�
and the associated moments hrkinl in position space were
obtained directly from the numerical radial functions as
described in Ref. [14]. The corresponding momentum
density Pnl�p� and the associated moments hpkinl were
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determined by incorporating the numerical Hankel
transformation [15] of the Hartree-Fock radial functions
into the MCHF72 code, as explained in Ref. [16]. The
subshell intracule densities hnl�u� in position space and
�hnl�v� in momentum space as well as their moments
hukinl and hvkinl were obtained by the method developed
recently [3]. The extracule densities dnl�R� and �dnl�P� and
moments hRkinl and hP kinl were determined by the
procedure given in Ref. [4]. However, these extracule
properties were only used to verify numerically the
equalities proved in Sect. 2.4 and are not presented in
Sect. 4.

4 Numerical results and discussion

By de®nition, all the one-electron subshell density
functions are normalized to the number of subshell
electrons Nnl, while all the two-electron subshell density
functions are normalized to the number of subshell
electron pairs Nnl�Nnl ÿ 1�=2. Throughout this Section,
however, we will use a modi®ed normalization scheme,
which normalizes all the one- and two-electron subshell
densities to unity, in order to avoid large numbers
and to facilitate the mutual comparison of the one- and
two-electron moments.

We have ®rst con®rmed the validity of the 2k-rule
[Eq. (16c) and its momentum-space analog] between the
intracule and extracule moments numerically. Thus,
only the intracule moments hukinl and hvkinl are discus-
sed below.

In the modi®ed normalization scheme, Eq. (21a) for
the second intracule hu2inl and one-electron hr2inl
moments in position space reads

hu2inl � 2hr2inl ; �24a�
and the second subshell moments are strictly propor-
tional. Motivated by the simplicity, yet rigor of this
relation, we have examined possible correlations be-
tween hukinl and hrkinl for k � �1;ÿ1, and ÿ2, based on
the numerical Hartree-Fock data for 357 subshells of
53 atoms. We have found that there is a good linear
correlation between the one- and two-electron moments
for each value of k, if the subshells are classi®ed according
to the n and l values. Table 1 summarizes the correlation
coe�cients (CCs) between the moments hukinl and hrkinl

together with the values of a parameter aknl appearing in the
least squares linear approximation,

hukinl � aknlhrkinl : �24b�
For k � �1, we ®nd in Table 1 that excellent corre-

lations with CC > 0:9999 exist for all the subshells with
the sole exception for 5p. Figure 1a depicts the correla-

Table 1. Linear correlation co-
e�cient (CC) in position space
between subshell moments
hukinl andhrkinl. Normalizations

are hu0inl � hr0inl � 1. For
k � �2, hu2inl � 2hr2inl holds
exactly for any subshell nl. The
coe�cient aknl is de®ned
in Eq. (24b)

nl No. of
subshells

k � �1 k � ÿ1 k � ÿ2
a1nl CC aÿ1nl CC aÿ2nl CC

1s 53 1.465601 0.999998 0.623410 1.000000 0.331315 0.999999
2s 51 1.418377 0.999998 0.609413 0.999997 0.152081 1.000000
3s 43 1.405515 0.999999 0.629798 0.999977 0.104530 0.999959
4s 33 1.402308 0.999993 0.667440 0.999854 0.089914 0.999374
5s 11 1.398631 0.999986 0.710404 0.999956 0.098896 0.998568

2p 49 1.455512 0.999987 0.689377 0.999999 0.519710 0.999992
3p 41 1.428648 0.999979 0.630442 0.999980 0.282467 0.999986
4p 23 1.419981 0.999941 0.644366 0.999659 0.212776 0.999648
5p 5 1.420583 0.999852 0.666561 0.996537 0.198457 0.989615

3d 33 1.446091 0.999976 0.721547 0.999988 0.615637 0.999956
4d 15 1.429191 0.999979 0.663355 0.999858 0.359209 0.999482

Fig. 1a,b Examples of the linear correlations observed in position
space between one- and two-electron subshell moments. Note that
all subshell densities are normalized to unity. All values in hartree
atomic units. (a) huinl and hrinl (b) huÿ1inl and hrÿ1inl
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tion for the 1s; 2p, and 3d subshells. The proportionality
constants a1nl distribute around 1.42 and do not di�er
much from one subshell to another. However, the a1nl
values tend to decrease when n and l values increase. It
may be interesting to ®nd the presence of an approxi-
mate linear relation between the average electron-
nucleus distance hrinl and the average electron-electron
distance huinl of an atomic subshell. When the huinl
values are estimated from the hrinl values based on the
regression line (24b) with the a1nl values in Table 1, the
average relative error for each subshell is largest for 3d,
1.31%, among the 11 subshells. Linear correlation be-
tween huinl and hrinl is concluded to be highly accurate
though not rigorous.

For k � ÿ1, the CCs in Table 1 are slightly worse
than those for k � �1, but still greater than 0.9998 ex-
cept for the 4p and 5p subshells. Examples are given in
Fig. 1b. The proportionality constants aÿ1nl are dis-
tributed around 0.65, but their dependence on the n and
l values is not simple. It is noteworthy that the electron
repulsion energy huÿ1inl between a pair of electrons in an
nl subshell has a good linear relation with the average
value hrÿ1inl of the reciprocal electron-nucleus distance
of that subshell. When Eq. (24b) is employed to estimate
huÿ1inl from hrÿ1inl, the average relative error was
largest (3.26%) for the 4s subshell. For k � ÿ2, the
correlation between hukinl and hrkinl is reduced from that
for k � ÿ1. The proportionality constants aÿ2nl change
considerably depending on n and l. Nevertheless, we still
observe su�ciently accurate linear correlations for inner
subshells such as 1s±3s, 2p; 3p, and 3d.

The linearity observed above depends on the power k
and the principal n and azimuthal l quantum numbers of
atomic (radial) orbitals. To explain this fact, we have
considered a hydrogenic radial function with an expo-
nent f,

Rnl�r� ��ÿ1�nÿlÿ12f3=2
�nÿ lÿ 1�!

n�n� l�!
� �1=2

� �2fr�l L2l�1
nÿlÿ1 �2fr� exp �ÿfr� ; �25�

where Lk
n�x� is the associated Laguerre polynomial and

the phase factor �ÿ1�nÿlÿ1 is included for consistency
through Eq. (4c) with the momentum-space counterpart
that will be introduced later. The hydrogenic function

(25) predicts that the moments hukinl and hrkinl are
proportional, and the proportionality constant is inde-
pendent of f but dependent on k; n; l, electronic con-
¯guration, and LS coupling of the subshell. For closed
ns�2�; np�6�, and nd�10� subshells with 1S coupling, we
have evaluated the hydrogenic proportionality constants
and tabulated them in Table 2. Comparison of the
values in Tables 1 and 2 shows that the hydrogenic
constants are not far from the Hartree-Fock ones,
and our hydrogenic model with the correct nodal
structure of atomic subshells appears to explain semi-
quantitatively the observed linear correlations between
hukinl and hrkinl. However, the di�erences between the
hydrogenic and Hartree-Fock constants are generally
larger for outer subshells than for inner subshells, as
anticipated.

In momentum space, the rigorous relation of (21b)
between the second intracule hv2inl and one-electron
hp2inl moments reads

hv2inl � 2hp2inl ; �26a�
when the modi®ed normalization scheme is applied. The
proportionality is thus exact for k � �2 between hvkinl
and hpkinl. For k � �1;ÿ1, and ÿ2, we have examined
correlations between hvkinl and hpkinl for the 357
subshells of the 53 neutral atoms. The results are

Table 2. Hydrogenic proportionality constants hukinl=hrkinl for
subshells in position space. Normalizations are hu0inl � hr0inl � 1.
For k � �2; hu2inl=hr2inl � 2 exactly for any subshell nl

nl k � �1 k � ÿ1 k � ÿ2
1s 1.458 333 0.622 500 0.333 333
2s 1.410 807 0.601 563 0.152 381
3s 1.402 247 0.597 656 0.099 375
4s 1.399 266 0.596 344 0.073 882
5s 1.397 888 0.595 749 0.058 847

2p 1.428 281 0.698 438 0.537 143
3p 1.420 102 0.620 898 0.296 623
4p 1.415 020 0.597 455 0.207 233
5p 1.412 383 0.587 122 0.159 969

3d 1.403 179 0.752 973 0.681 685
4d 1.411 583 0.664 305 0.416 793
5d 1.409 854 0.630 566 0.304 921

Table 3. Linear correlation
coe�cient (CC) in momentum
space between subshell mo-
ments hvkinl and hpkinl. Nor-
malizations are hv0inl �hp0inl � 1. For k � �2,
hv2inl � 2hp2inl holds exactly
for any subshell nl. The coe�-
cient bknl is de®ned by Eq. (26b)

nl No. of
subshells

k � �1 k � ÿ1 k � ÿ2
b1nl CC bÿ1nl CC bÿ2nl CC

1s 53 1.459791 1.000000 0.646575 0.999985 0.398035 0.999973
2s 51 1.559090 1.000000 0.653098 0.999963 0.438708 0.999941
3s 43 1.587224 0.999997 0.634094 0.999781 0.433559 0.999792
4s 33 1.603397 0.999998 0.638655 0.999927 0.432529 0.999970
5s 11 1.608559 0.999999 0.630928 0.999835 0.424518 0.999956

2p 49 1.434626 1.000000 0.665294 0.999536 0.428764 0.992649
3p 41 1.516092 0.999999 0.679695 0.999421 0.479898 0.988800
4p 23 1.540707 0.999998 0.679708 0.998789 0.497200 0.982301
5p 5 1.535947 0.999979 0.673404 0.993029 0.487975 0.883961

3d 33 1.422632 0.999995 0.685015 0.999481 0.473280 0.993814
4d 15 1.488385 0.999994 0.697565 0.999414 0.527757 0.990074
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summarized in Table 3, where bknl is the parameter
appearing in the least square linear ®tting,

hvkinl � bknlhpkinl : �26b�
For k � �1, an excellent linear correlation is seen in

Table 3, as was the case in position space. All the CCs
between hvinl and hpinl are larger than 0.99999 except for
the 5p subshell. Thus, the two-electron hvinl and one-
electron and hpinl moments are essentially proportional.
The proportionality constants b1nl in Table 3 range from
1.42 to 1.61, and show a tendency to increase with in-
creasing n but decrease with increasing l. When Eq.
(26b) is employed to approximate hvinl based on hpinl,
the average relative error does not exceed 1% for any
subshell and is largest (0.93%) for the 3d subshell. For
k � ÿ1 and ÿ2, the momentum-space correlation be-
tween hvkinl and hpkinl is generally worse than the posi-
tion-space one between hukinl and hrkinl. In particular,
the poorest correlation in momentum space is found for
the 5p subshell with CC = 0.993 when k � ÿ1 and CC
= 0.884 when k � ÿ2. This observation may be ex-
plained by the position-momentum reciprocity. Outer
subshells, which are most sensitive to the atomic cir-

cumstances, have electronic distributions mainly around
the origin in momentum space, and the moments hvkinl
and hpkinl with k < 0 are largely in¯uenced by the
di�erences. Figure 2 illustrates the linear correlations
observed in momentum space for k � �1 and ÿ1.

When a momentum-space hydrogenic radial func-
tion,

Pnl�p� � �ÿi�l 2l�2 f5=2 l!
2n�nÿ lÿ 1�!

p�n� l�!
� �1=2

� �2fp�l
�p2 � f2�l�2 Cl�1

nÿlÿ1
f2 ÿ p2

f2 � p2

� �
; �27�

with Ck
n�x� being the Gegenbauer polynomial, is assumed

for a closed nl subshell, we ®nd that the moments hvkinl
and hpkinl are precisely proportional, independent of the
exponent value f. The hydrogenic constants of propor-
tion bknl are summarized in Table 4. When the propor-
tionality constants in Tables 3 and 4 are compared, we
®nd that the Hartree-Fock results are approximately
explained by the hydrogenic model. However, the
di�erence between the corresponding two values in-
creases when the k value decreases. For k � ÿ2, the
hydrogenic constants are far from the Hartree-Fock
values particularly for p and d subshells.

5 Summary

The two-electron intracule hukinl and extracule hRkinl
subshell moments in position space have been studied as
well as their counterparts hvkinl and hP kinl in momentum
space, when n and l are the principal and azimuthal
quantum numbers of the atomic subshell, respectively.
We have proved that equalities hukinl � 2khRkinl and
hvkinl � 2khP kinl hold between the intracule and extra-
cule moments for any nl subshell, where k is a real
number for which the relevant moments are well
de®ned. We have also shown that for a particular case
of k � �2, relations hu2inl � �Nnl ÿ 1�hr2inl and hv2inl ��Nnl ÿ 1�hp2inl are strictly valid, where Nnl �� 2� is the
number of electrons in the subshell nl, and hrkinl andhpkinl are the one-electron subshell moments in position

Fig. 2a,b Examples of the linear correlations observed in momen-
tum space between one- and two-electron subshell moments. Note
that all subshell densities are normalized to unity. All values in
hartree atomic units. (a) hvinl and hpinl (b) hvÿ1inl and hpÿ1inl

Table 4. Hydrogenic proportionality constants hvkinl=hpkinl for
subshells in momentum space. Normalizations are hv0inl �hp0inl � 1. For k � �2, hv2inl=hp2inl � 2 exactly for any subshell nl

nl k � �1 k � ÿ1 k � ÿ2
1s 1.458 333 0.656 250 0.416 667
2s 1.557 292 0.632 813 0.425 641
3s 1.575 617 0.570 429 0.351 020
4s 1.582 162 0.528 809 0.297 222
5s 1.585 238 0.499 072 0.258 578

2p 1.428 281 0.715 000 0.595 000
3p 1.510 882 0.673 391 0.573 143
4p 1.541 432 0.635 091 0.511 606
5p 1.557 306 0.604 108 0.458 726

3d 1.403 179 0.764 100 0.726 455
4d 1.475 697 0.712 252 0.676 142
5d 1.509 565 0.680 002 0.620 401
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and momentum spaces, respectively. The latter equality
yields a new and rigorous relation between the second
electron-pair moments in momentum space and the total
energy of an atom through the virial theorem. For
k � �1;ÿ1, and ÿ2, the numerical Hartree-Fock results
for the 357 subshells of the 53 neutral atoms from He to
Xe show that there are approximate but accurate linear
relations between hukinl and hrkinl and between hvkinl
and hpkinl, in which the proportionality constant in each
space is common to all the atoms and depends on n; l,
and k.
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